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Abstract 

Computer Generated Forces (CGFs) are important players in Distributed Interactive 

Simulation (DIS) exercises. A problem with CGFs is that they do not exhibit sufficient 

human behaviors to make their use effective. The SOAR approach has yielded a human 

cognitive model that can be applied to CGFs, but this is extremely complex. The prod- 

uct of the research reported in this thesis is a much less complex behavioral framework 

for a CGF that is easy to validate, revise, and maintain. To support this, an existing, 

domain independent CGF architecture is discussed and applied to an experimental CGF. 

Techniques for modeling the knowledge and behaviors of any CGF via semantic nets are 

presented. A process for transforming the semantic nets into fuzzy controllers is outlined, 

and pertinent issues regarding fuzzy controllers are discussed. Lastly, a method for making 

time critical decisions via fuzzy logic is presented. 
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A DOMAIN INDEPENDENT FRAMEWORK 

FOR DEVELOPING 

KNOWLEDGE BASED 

COMPUTER GENERATED FORCES 

/.   Introduction 

Never tell a young person that something cannot be done. God may have been 
waiting for countless centuries for somebody ignorant enough of the impossibility 

to do that thing. - (Unknown) 

1.1    Motivation 

Running wargame exercises via Distributed Interactive Simulation (DIS) is a reality 

within the DoD. As a testamony to this, several major organizations including the Defense 

Modeling and Simulation Office (DMSO), the U.S. Air Force Directorate for Modeling, 

Simulation and Analysis, and the U.S. Army's Force XXI program, all directly promote 

the development of virtual wargame exercises. It has become routine for simulation centers 

such as the Air Force's Theater Battle Arena, and Warrior Preparation Center, as well as 

the Defense Advanced Research Projects Agency (DARPA) WarBreaker facility, to host 

highly complex simulations involving hundreds of players, both human and artificial. This 

virtual simulation capability has enabled the DoD to conduct scenarios that would never 

be possible in peacetime operations, such as simulating live fire tactical engagements by 

using high fidelity weapon models. Along with this opportunity, a demand has risen for 

better artificial players. It is currently the practice of simulation centers to augment their 

human players with Computer Generated Forces (CGFs). This makes the simulation more 

realistic by adding the necessary player components expected in a given situation, thus 

increasing the training value of the simulation. Indeed, this inherent ability of virtual 

environments to equally represent human and artificial players makes it a highly desirable 

tool. 
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One problem with the current DIS exercises, is that artificial players typically do 

not exhibit sufficient human behaviors to make them blend with their human player coun- 

terparts [10]. This inability to appear human in behavior gives the human adversary an 

advantage in deciding his course of action. By knowing which players are human and 

which are artificial, and having an understanding of the artificial player's responses in 

given situations, the human adversary has an unfair advantage and the training value is 

lost. 

The purpose of this research is to enable more human-like behaviors in CGFs. The 

goal is to derive a domain independent framework that can be applied to an existing archi- 

tecture whereby specific behaviors can be integrated into several levels of CGF design. An 

important subgoal is to keep knowledge bases highly modular so that changes to knowledge 

bases do not necessitate a change in system design. 

1.2 Collaborative Effort 

This research was conducted in close conjunction with another student's research. 

Capt Vincent B. Zurita's thesis An Architecture for Computer Generated Forces in Complex 

Distributed Virtual Environments [40] should be considered a companion volume to this 

thesis, as the concepts within each are interdependent. In addition, due to the fundamental 

and jointly owned concepts involved, Chapter III has been co-authored and included in 

both theses for clarity and completeness. For a short overview of the background material 

necessary to understand this thesis, refer to Appendix A. 

1.3 Intelligent Wingman 

The Intelligent Wingman is an experimental CGF sponsored by ESC and assembled 

at AFIT's Virtual Environments Laboratory. A majority of this research was conducted 

via the Intelligent Wingman, and while it is not expressly presented in this thesis, many 

examples from the Intelligent Wingman are used throughout the text to illustrate the 

concepts presented. 
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1.4    Overview 

1. Chapter II begins the heaxt of this research by exploring why the use of fuzzy logic 

is appropriate to this problem and how it has been applied before. 

2. Chapter III considers the problem of utilizing a domain independent architecture 

for CGF construction. The roles of the essential subcomponents are defined that 

become the foundation for combining software and knowledge engineering goals. The 

architecture is applied to the Intelligent Wingman, and as a result, a concurrent 

processing perspective of the architecture is produced. 

3. Chapter IV organizes generic CGF knowledge classifications, and the domains CGFs 

operate within. A graphical nomenclature is established for representing the knowl- 

edge relationships within the domains via a semantic net, and several examples are 

given. 

4. Chapter V outlines how the semantic nets are transformed into fuzzy controller pro- 

cesses, and discusses issues related to this process. 

5. Chapter VI discusses issues involving using fuzzy controllers in a comparative decision 

process. 
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//.   Role of Fuzzy Logic 

There is one thing stronger than all the armies in the world:  and that is an 
idea whose time has come. - Victor Hugo 

This chapter presents the purpose of using fuzzy logic and how it applies, examines 

previous work in this area, and describes the fuzzification process. Lastly, methods for 

qualifying success are discussed. 

2.1     Why Use Fuzzy Logic? How Does it Apply? 

Fuzzy logic is not an imprecise logic, it is a logic of imprecision. It is a way to represent 

the inherent inexactness that pervades our world. When we think about describing or 

classifying a particular thing, it is often the case that a relative qualifier is applied rather 

than a discrete qualifier. It is this ability of fuzzy logic to portray the inexactness of 

something that makes it an excellent vehicle to describe bodies of knowledge and decisions 

that are not absolute. 

Such is the nature of human decision making. When a person makes a decision, it 

is done in a relativistic way that includes perspectives with varying degrees of certainty. 

Even seemingly concrete decisions include opposing perspectives that simply have a high 

degree of non-applicability. In contrast, a standard boolean logic approach to decision 

making requires that all perspectives fall within discrete categories of certainty: yes or no, 

true or false, black or white, etc. 

If the goal of a CGF is to simulate the behavior of a human, why design it to think 

in discrete, precise terms so that its actions have discrete, predictable results? To better 

simulate the behavior of a human, a CGF needs the ability to think in gradients, and to 

have the ability to weigh sensory inputs according to their relative importance rather than 

assigning a singular meaning to the input. For example, consider an F-16 CGF that is 

poised to encounter a bandit aircraft that is 17 miles away.   The F-16 is armed with a 
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missile that has a maximum range of 15 miles. As the F-16 decreases the distance between 

the two aircraft, the bandit's range state changes discretely when the F-16 comes within 

15 miles of the bandit. If the F-16 was using this range as the qualifier for whether or not 

to fire, it would do so even though perhaps the missile has a low probability of successfully 

reaching the target before running out of fuel. If, on the other hand, the range is modeled 

as a set of two fuzzy terms depicting the degree to which the bandit was in and out of 

range, the F-16 CGF could decide on when to shoot as a function of the degree to which 

the Bandit was in range, thereby increasing the probability of a successful kill. 

Conversely, an argument can be made that instead of having only two discrete range 

states, that three or more can be employed to better describe the bandit's range. This 

is certainly possible, but a trade-off occurs in that the complexity of the underlying rule 

based system grows in complexity as more states are added to the system. By utilizing 

a fuzzy range state, the complexity of the system can be kept low while allowing a high 

degree of expression in the state spaces. 

Fuzzy logic can therefore be accepted as an appropriate means for decision making, 

but what about the implementation of those decisions? A CGF is still a digitally controlled 

entity, and even though it may make a decision based on fuzzy factors, unless otherwise 

programmed, it will still implement those decisions with the precision of a digital entity. 

What is needed is to introduce a certain amount of uncertainty into the actions of the CGF. 

When humans perform actions, they seldom do so with exacting precision, especially in 

highly stressful situations such as combat. If a CGF is to simulate the imprecision in human 

behavior, then imprecision must be introduced in the CGF. Fuzzy logic can introduce this 

imprecision in completely scalable ways by implementating decisions as a function of any 

number of fuzzily defined CGF capability attributes. For instance, it goes without saying 

that each person is different. We all have different strengths and weaknesses which enable 

us to do things to varying degrees. Why not enable a CGF with the same basic degree of 

varying qualities? As will be shown later, it is possible to define a grouping of qualities 

that make up an individual, and by means of fuzzy inferencing, determine the varying 

degrees to which the qualities affect the implementation of decisions. Indeed, this could 

be a highly dynamic process wherein crucial environmental factors affect the performance 

2-2 



of the CGF. This would allow nearly an infinite number of instantiations of a single CGF 

by varying the quality attributes. 

Still the question can be asked, hasn't this already been done? Doesn't a model 

already exist? As discussed in Chapter A, there are two fundamental types of virtual 

entities: cognitive process models and behavioral models. An extensive amount of work 

has been done on the SOAR cognitive process model [18]. This is a highly complex model 

that's been generalized to do multi-domain problem solving [23]. A goal of this research is 

to obtain the same general results in behavior as SOAR without the overhead of modeling 

the cognitive process. This would provide a less costly and less complicated, but fully 

functional CGF. To date, this has yet to be done. 

The originator of fuzzy logic, Loth A. Zadeh, summed this up well when he said, 

"What is gained through fuzzification is greater generality, higher expressive 
power, and enhanced ability to model real-world phenomena and, most impor- 
tantly, a methodology for exploiting the tolerance for imprecision - a method- 
ology which serves to achieve tractability, robustness and lower solution cost." 

[39] 

2.2    Previous Work in Applying Fuzzy Logic to CGFs 

This work is a direct follow-on to a proof of concept given by Edwards [9]. Other 

work includes Parsons [29], whose work was directed towards using the intuitiveness and 

efficiency in fuzzy logic controllers to simulate command and control decisions. He shows 

how the controller is the heart of a value driven decision making process. Work similar to 

this will be shown later on in Chapter VI. Stytz and Block [26] presented an application 

to help users pay attention to places where items of interest were occurring in large scale 

virtual environments. The application used a fuzzy logic controller to decide what was 

important enough to be paid attention to. 

George and Cardullo [12] have written a paper that proposes a unified model for 

simulator sensor fusion that could be useful to a fuzzy CGF. Ruspini [32] has published 

a paper in which he uses a fuzzy logic approach to solve control problems of complex 

systems operating in uncertain environments. Fundamentally he asserts that fuzzy logic is 

the necessary approach to solve this class of problems. 
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2.3 What Should Be Fuzzified? 

Naturally this question needs to be asked. The answer lies in the application, and 

to what degree the CGF's behaviors need to be modified to appear human. As will be 

seen later in Chapters IV and V, the process of knowledge engineering a CGF will include 

identifying those measurements, decisions, and actions that need to be fuzzified. 

2.4 How To Approach the Fuzzification Process 

Given that the state of CGF development is still very young, an incremental build and 

test approach should be used when engineering fuzzy controller processes. It is necessary to 

build and prove the foundational controllers before moving on to more advanced controllers. 

Chapters rV through B present a perspective on this process. 

2.5 The Measure of Success 

How and when will we consider this approach to building CGFs a success? Petty 

[30] proposes applying the Turing Test to CGFs as a direct measure of their success. Petty 

discusses the applicability and usefulness of the Turing Test, and what is implied by a CGF 

passing the test. His conclusions were that the CGF Turing Test was technically irrelevant 

for training situations, but that the test still provided a useful heuristic in determining the 

quality of the CGF system. 
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777.   General CGF Architecture 

There is no expedient to which a man will not go to avoid the real labor of 

thinking. - Thomas A. Edison 

In order to effectively seek the solution of a problem, one must first thoroughly 

understand the problem. The purpose of this chapter is to explore the domain of the 

CGF architecture problem, examine a currently existing architecture, and to present a 

concurrent processing perspective of this architecture. This will be done by breaking the 

architecture down into its subcomponents, and further defining the functions of the essen- 

tial subcomponents via semantic Areas of Concern. The concurrent processing perspective 

is useful for understanding the dynamics of the CGF architecture. 

3.1    Define the Problem Domain 

When considering the virtual environment, it is certainly plausible to envision a 

CGF filling the role of any of the entities within that environment. Regardless of the 

role of the entity, given that we have sufficient understanding of the entity's knowledge 

and its behavior in a specified environment, we should be able to create a CGF to fill 

that entity's role. If we assume for the moment that we do have an understanding of an 

entity's knowledge base and its intrinsic behaviors, the question then arises "How do we 

assemble this entity"? How would we combine our understanding of the entity's knowledge 

and behaviors into a software architecture? But more than this, does an architecture 

already exist that could be used so we wouldn't have to "reinvent the wheel"? If so, 

can it be adapted to suit this new entity, or has it been so tightly coupled to its current 

implementation that it won't meet our needs? 

This is the essence of the architecture problem domain. Given that a need exists 

to build a CGF, is there some design architecture or methodology that can be applied 

to take the CGF from concept to implementation, regardless of the type of CGF that 
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needs to be implemented? This is a more complex problem than may be at first realized. 

Consider the elements of Figure 3.1. Any CGF we consider will have a combination of 

these elements, but to identify these general types certainly doesn't appear complex. The 

complexity comes in when all the specific instances of these elements and their resulting 

data and control flows are considered. 

Figure 3.1    Generic elements of a CGF's domain. 

Currently, it seems that whenever a simulation center implements a CGF, they do 

so from the ground up. What is needed is a single, domain independent solution to solve 

this problem. 

3.2    An Existing Architecture 

There is an existing architecture that takes the first step in mapping this problem 

domain. Santos, et al have devised a general architecture of CGF components [10]. Figure 

3.2 is their model for an adaptable CGF architecture. 

To summarize their work, a CGF is essentially comprised of two types of components: 

1. Physical Dynamics Component (PDC) 

2. Active Decisions Component (ADC) 
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Figure 3.2    CGF architecture showing the Physical Dynamics Component, Active Deci- 
sions Component, and CGF Router. 

The PDC is made up of the components necessary to model the CGF's physical 

makeup, such as propagation models, sensor models, weapons models, defensive elements 

models, etc. The PDC also contains those initialization parameters that are necessary to 

give the CGF a specific identity, such as performance specifications and limitations, as well 

as more human traits such as operator capabilities and constraints. 

The ADC is composed of the components that use the information from the PDC to 

make decisions, and is broken down into the following subcomponents: 

1. Strategic Decision Engine (SDE) 

2. Tactical Decision Engine (TDE) 

3. Critical Decision Engine (CDE) 

4. Basic Control Module (BCM) 

Each of the decision engines comprises a different level of decision making process. 

The SDE is concerned with high level functions such as understanding and implementing 

mission level goals, receiving and interpreting communications from other players, com- 

municating with other players, and revising mission goals and subgoals. 
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The TDE's role is to manage the moment-to-moment operations of the entity. This 

entails receiving specific mission taskings from the SDE (subgoals) and implementing these 

according to the knowledge base of the particular entity. This will include activities such 

as determining what maneuvers to make in a given situation, determining when to employ 

ordnance, and when to implement other application specific elements such as electro- 

magnetic counter measures. 

The CDE is the survival instinct element of the virtual entity whose responsibility 

includes taking over control of the entity in emergency situations where termination of the 

entity is imminent. This is analogous to a person's instinctive reflexes transfered to the 

domain of the specific entity. 

The BCM's role is to determine the proper propagation model inputs to perform the 

movements dictated by either the TDE or CDE. The BCM is considered a subcomponent 

of the ADC because it uses modeled behaviors to determine control inputs. 

Interactions between the ADC subcomponents were defined as a number of finite 

state spaces and were maintained in a central communication structure. 

Although not considered a component equal to the ADC or PDC, the CGF architec- 

ture has another important structure. This structure is the CGF Router (see Figure 3.2), 

and represents the interface between the Distributed Virtual Environment (DVE) and the 

two components, ADC and PDC. 

The essence of this model lies in applying the concept of separation of concerns to the 

domain of CGFs. As defined in the practice of software engineering, applying a separation 

of concerns in a system design means separating the "how" from the "what" in the system. 

This is especially useful in creating an architecture for modular CGFs where we want to 

separate out an entity's decision making ability from its physical ability. It is also useful 

for scoping the entire decision making process down into manageable subcomponents. This 

concept of applying a separation of concerns is the foundation on which this research is 

based. 
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3.3    Essential Subcomponents 

The CGF architecture was applied to the Intelligent Wingman as an integral part 

of this research. The idea was to build the Wingman completely around the ADC/PDC 

concept so that modules such as the aero model, sensor models, and behavioral compo- 

nents could be interchanged without disturbing the rest of the system. The first step in 

this process was to identify the principle subcomponents of the architecture that would 

be needed to begin constructing the Wingman. The following components were directly 

derived from the architecture model: 

1. ADC Subcomponents 

(a) SDE 

(b) TDE 

(c) CDE 

(d) BCM 

2. PDC Subcomponents 

(a) Propagation Model 

3. CGF Router Subcomponents 

(a) DIS Interface 

3.4    Semantic Areas of Concern 

One of the primary purposes of Santos et al's architecture was to lay a common 

foundation from which a software engineer and a knowledge engineer could successfully 

model both the design and behavior of a CGF. Pursuant to this, the roles of the decision 

engines were described [10]. However, as the decision engines were being developed for 

the Wingman, it was necessary to more clearly define the abstracted roles of the decision 

engines. To accomplish this, semantic Areas Of Concern (AOC) were used. An AOC is 

simply a question that must be answered in order to understand the role of that decision 

engine.   The purpose of the AOCs is two fold:  first, they help the knowledge engineer 
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identify the kinds of knowledge and behaviors that need to be modeled at the different 

levels of decision making, and second, they help the software engineer organize the various 

processes into encapsulated modules that can be replaced with like modules. In the end, the 

AOCs help both types of engineers make a smooth transition from the generic architecture 

to an applied design. 

The AOCs were established as a result of modeling the real world considerations 

that confront a present day war fighter. We placed ourselves in the role of a "generalized" 

war fighter, and used our expertise as military officers to determine the knowledge that a 

decision engine would need in order to accomplish its generalized purpose as described by 

Santos et al [10]. For example, perhaps the single most fundamental question to any war 

fighter, regardless of service or rank, is determining one's mission. If a person or unit wants 

to know their function, the question is asked, "What is my mission?" Likewise, there are 

intuitive follow-on questions, such as "How do I go about accomplishing my mission?", and 

"What is my current task within the mission"? These questions are absolutely germane 

to both the decision engines and the role of a war fighter. In the process of enumerating 

the questions, they were then tailored to be domain independent, and were focused a bit 

more to be in line with the thinking of a CGF. 

To make the AOCs as simple and direct as possible, they are written in a first person 

perspective from the CGF's point of view. They are designed so that by answering these 

questions in the context of a specific type of CGF within a specified domain, the bulk of 

the work for identifying the CGF's behaviors will be accomplished. 

Note that these AOCs are not arranged in any intended chronological order, and that 

they may be tailored for a CGF type by adding new ones or by eliminating those that do 

not apply. The key questions are as follows: 

1. SDE 

• What is my mission? 

• How do I go about accomplishing my mission? 

• Am I able to accomplish my mission? 
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• What is my current task within the mission? 

• How do I communicate with other entities? 

• How do I perceive the outside world? 

• How do I deal with a lack of appropriate information? 

• What are the target types that I am designed for? 

• What are my responsibilities? 

2. TDE 

• What kinds of maneuvers am I capable of? 

• What kinds of weapons do I know how to use? 

• How do I choose which maneuver to apply? 

• How do I know when to "take my shot"? 

• How do I know that the weapon was effective? 

• How am I aware of my environment? 

• How do I take the environment into account in deciding on a maneuver? 

• What is my tasking within this mission? 

3. CDE 

• Am I in any immediate danger? 

• If I were in danger, what maneuvers do I know how to do in order to remain 

alive? 

• How would I decide on which maneuver to make? 

• What kinds of countermeasures do I know how to use? 

• How do I decide on when to use a countermeasure? 

Defining the roles of the decision engines in this fashion reinforces two points made 

by Santos et al in their architecture. One, the decision engines are engaged in distinctly 

different levels of decision making.  This distinction implies different cyclic requirements 
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for each decision engine.  Two, the decision engines rely on certain PDC components to 

make decisions. 

A conclusion can be drawn from these two points in regards to program organization 

within the CGF architecture. The conclusion is that concurrent program processes should 

be centered around the ADC subcomponents. As for PDC subcomponents, they should 

also be concurrent program processes when cyclic or control requirements demand, or they 

can be included in the program process they are most closely tied to. An argument could 

be made to the contrary however, and state that each PDC subcomponent should be a 

separate program process and not be included in the program processes primarily devoted 

to ADC subcomponents. This argument goes against the opinion of established software 

professionals such as Gomaa [14] who state that having too many tasks increases the system 

overhead and complexity unnecessarily. Hence, program process consolidation should be 

done whenever feasible. 

3.5    Concurrent Process Perspective of CGF Architecture 

As a result of the above conclusion, Figure 3.3 shows the ADC subcomponents em- 

bedded within program processes of the same name. Parallelograms are used to denote 

program processes as established by Gomaa [14].. The program processes are depicted as 

interlocking ADC/PDC components to indicate the close relationship between those sub- 

components within that program process. The separate graphs within the PDC portions 

of the program processes represent separate PDC subcomponents. Note that in keeping 

with the architecture design, control and state information flow are indicated by the arrows 

going between the interlocking components. 

Because the PDC and CGF Router subcomponents identified in Section 3.3 have a 

high importance in the CGF architecture, they are included with the program processes 

of Figure 3.3 to make Figure 3.4. 

Consequently, the CGF architecture can be broken down into a core of six concurrent 

process. These are certainly not the only program processes that could be included here, 

they are simply the only ones identified at this time.    Identifying additional program 
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Figure 3.3    ADC and PDC subcomponents embedded within program processes. 
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Figure 3.4    Essential PDC program processes in addition to the preceding ADC program 
processes. 
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processes would be the result of deciding a particular PDC subcomponent needed to have 

its own process, or perhaps determining a need for a different level of decision making. 

Figure 3.4 does not show any inter-process communication occurring. In order to 

allow asynchronous communications between the program processes, it is necessary to ex- 

pand the definition of the CGF Router to include a "Communication/Control Channel". 

Figure 3.5 shows how this Communication/Control Channel would interconnect all sub- 

components between all the program processes. The purpose of this construct is to give any 

subcomponent access to the information provided by any other subcomponent, regardless 

of program process or cyclic requirements. 

SDE TOE CDE 

DVE 

DVE Propagation Balte 
lnt«rfdc« Mod«l Control 
Modul« Modul« 

Figure 3.5    The completed concurrent process perspective of the CGF architecture. 

3.6    Conclusion 

By defining the decision engines according to semantic AOCs, a common foundation 

is established from which both software and knowledge engineers can begin the process of 

designing the software and behaviors of a CGF. By grouping ADC subcomponents with the 

PDC subcomponents they need most into the same program processes, a natural grouping 
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of concurrent processes is established. By including the essential PDC and CGF Router 

subcomponents as separate program processes and combining these with the ADC program 

process, a concurrent process perspective of the CGF architecture is established that can 

be useful for understanding the dynamics of the architecture. 

At this point the research separates into two paths, software engineering and knowl- 

edge engineering, that will eventually come back together. Refer to Zurita's work [40] 

for a software engineering perspective that takes these AOCs and categorizes them into 

abstract data type modules that are further refined via a series of design templates aimed 

at smoothing the software engineering process. 
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IV.   CGF Knowledge and Behavior Domain Model 

All knowledge has its origins in our perceptions. - Leonardo da Vinci 

This chapter establishes a knowledge and behavior domain model that serves as 

the foundation for applying knowledge engineering to derive a class of CGFs. This is 

accomplished by establishing classifications of knowledge and the domains in which they 

belong. These classifications and domains will serve as the building blocks from which 

semantic nets can be constructed that both define the behavior of a CGF and form the 

basis of controlling processes. Issues specific to domain analysis are also discussed. 

4-1    Knowledge Classifications 

To enable a mapping from the model presented in this chapter to the software ar- 

chitecture model, it is necessary to define the types of knowledge and behaviors involved 

so that they can be properly placed within the context of the software architecture. For 

instance, it is important to differentiate between knowledge that represents how a fighter 

maneuver is done, from knowledge that represents an environmental measurement, from 

knowledge that represents a decision that changes the state of something. 

The following knowledge types were actually determined after interviewing fighter 

pilot domain experts, and then trying to map the cause and effect relationships of their 

knowledge. Statements like "If the bandit's thus, and I'm here, then I need to do this...", or 

"Someone with this level of ability should be able to do this...", or "In order to determine 

this, then I need to know the following..." all seemed to be made up of the same basic 

kinds of knowledge, just arranged in different ways. For instance, a pilot's ability to detect 

something around him (situational awareness), and then to actually observe that thing, 

would require a decision be made for a reaction. These areas of knowledge could be loosely 

summed up as a quality (the situational awareness), a measurement (the observance), a 

decision, and state change (stick/throttle input).   Compare this to a pilot's flying skill 
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in completing a barrel roll. The areas could likewise be summed as a quality (the flying 

skill), an ability (the barrel roll), and state changes (stick/throttle input). We hypothesized 

that if these types of questions could be phrased generically, then they could potentially 

apply to any domain of war fighter. Consequently, a natural grouping of these knowledge 

types developed, and names were given to them to describe the generalized knowledge they 

represented. 

1. Measurements 

Measurements are a quantitative or qualitative assessment of an environmental vari- 

able such as vehicle speed, air temperature, vehicle orientation, ammunition remain- 

ing, etc. 

2. Attributes 

Attributes are parameters that describe the physical characteristics of the CGF, 

such as vehicle type, maximum speed, number and type of ordnance carried, radar 

cross-section characteristics, maximum diving depth, etc. 

3. Qualities 

Qualities are those scalable characteristics that help define the behavior of the CGF. 

Examples are situational awareness, gunnery accuracy, experience, etc. 

4. Abilities 

Abilities are those abstracted categories of skills that CGFs possess. Prime examples 

are basic fighter maneuvers, ground fire evasion tactics, bombing run tactics, refueling 

techniques, etc. 

5. Decisions 

There are two types: Non-comparative and comparative. Regardless of the type, a 

decision always has a result in at least one term set. Changes to a term set can be 

viewed as a state or goal change. There is no theoretical limit to the number of states 

that can be changed from a single decision. 
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(a) Non-Comparative Decisions are those that are the result of a single inferencing 

process. Like a trigonometric function, input parameters are supplied and a 

result is turned out. 

(b) Comparative Decisions are those that are the result of more than one inferencing 

processes that are compared together. 

6. States and Goals 

The idea of state and goal spaces is important to a CGF in that its very nature 

requires it to have a purpose and a way to identify where it is in the process of 

achieving that purpose. States and goals can be discrete or fuzzy, and are maintained 

at many levels. 

4-2    CGF Domain Breakdown 

Continuing with the thought of organizing the knowledge of a CGF, it is also neces- 

sary to determine the context that the knowledge types are defined in order apply meaning 

to them. Figure 4.1 was devised to represent these domains. The arrows depict that the 

domain has some affect on the other domain. 

Figure 4.1    Three domains of knowledge for a CGF. 
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The definitions of the domains are as follows. Domains are capitalized to distinguish 

them from knowledge types. 

1. BATTLESPACE 

Every physical thing that is exterior to the CGF is considered a part of the BAT- 

TLESPACE. Clearly this includes other CGFs, but also terrain, weather, and any 

other thing that can be observed and measured outside the CGF. 

2. ENTITY/OPERATOR 

The ENTITY/OPERATOR is the CGF. The delineation between the two depends 

on the application and whether a formal definition of the operator is required. This 

allows a great deal of flexibility in the design process by providing scalability in how 

much human behavior the CGF needs to exhibit. 

3. MISSION 

The abstract goals and purposes of the CGF belong in the MISSION domain. This 

domain is necessary to give the CGF an identity separate of its attributes. 

4-3    Mapping Knowledge Types within Domains 

As mentioned previously, knowledge types belong to specific domains. Figure 4.2 

shows the relationship between domains and knowledge types. 

The result of creating these knowledge classifications and their domains is that now 

the pieces exist with which a semantic net can be constructed that describes the behavior 

of a CGF. By identifying areas of knowledge specific to a CGF, classifying them by type, 

and then drawing the relationships between them, the semantics of a controlling process 

are created that can be mapped into a fuzzy logic controller process. In doing so, the 

generalized arrows in Figures 4.1 and 4.2 are replaced by specific relationships between 

knowledge bases. For the purposes of neatness, relationship names have been left off the 

arcs in the semantic nets within the following figures. In all cases, the arcs represent a 

"contributes to" or "determines" relationship. 
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BATTLESPACE MISSION 

ENTITY/ 
OPERATOR 

Figure 4.2    Knowledge types within their corresponding domains. 

A note on domain shapes. Depending on the number of knowledge sources and 

relationships needed, circles may be inadequate to represent the domains. Hence, the 

shape of a domain is not so important as describing the boundary of its contents and 

where those boundaries may overlap. No restriction should be placed on what physical 

shape the domains take. 

4.4    Mapping Knowledge Relations within Domains 

It is insufficient to simply establish knowledge types within domains. What matters 

most is the relationship between the knowledge areas and how they contribute to making 

a decision, accomplishing a task or mission. Depending on the knowledge types used in a 

relationship however, the meaning of the relationship may change, and this must also be 

captured in a representation. Hence, it is necessary to establish a notation to describe the 

various knowledge types and their relationships within the semantic net. The goal here is 

to derive meaning within the net by appropriate use of symbols and relationships. Figure 

4.3 shows the symbols used to represent the various knowledge types. 
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Measurement • »»^ } 

Attribute ( ) 

Quality £ ) 

Ability H^H 

Non-Comparitive Decision 

Comparitive Decision 

State/Goal 

Figure 4.3    Graphical knowledge type representations. 

The rest of this section is organized around presenting examples of five different 

combinations of knowledge types and their relationships. The first example will include the 

knowledge engineering process of soliciting knowledge from a domain expert and breaking 

that knowledge down into specific knowledge types with their respective domains and then 

drawing the appropriate relationships. The remaining examples will be an abbreviated 

form of the first example. 

4-4-1 Example 1. Suppose that it is necessary to determine the mission status of 

an aircraft CGF while in the course of its mission. Suppose also that a knowledge engineer 

gains from a domain expert the following statements in regards to determining the mission 

status. 

1. Determining mission status depends both on how attainable the mission is and the 

degree of the threat. 

2. The degree of threat is defined by a combination of having enough situational aware- 

ness to realize a bandit exists and then knowing the relative distance to that bandit. 
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3. Knowing how obtainable the mission is depends on the condition of the aircraft and 

the abilities of the pilot. 

According to these statements, the following cause and effect associations are deter- 

mined: 

1. knowing how attainable the mission is (and) the degree of the threat (determines) 

the mission status 

2. having enough situational awareness (and) knowing the relative distance to bandit 

(determines) the degree of the threat 

3. the aircraft condition (and) the pilot's abilities (determines) the mission attainability 

4. the aircraft position (combined with) the bandit position (results in) the relative 

distance to bandit 

The statements can then be distilled down to the essential knowledge elements, and 

propositional logic symbols used to express the knowledge combinations. 

1. mission attainability A threat =£ mission status 

2. situational awareness A relative distance to bandit ==$> threat 

3. aircraft condition A pilot abilities ==> mission attainability 

4. aircraft position A bandit position => relative distance to bandit 

Next, the knowledge engineer classifies the different pieces of knowledge and places 

them within their respective domains. The e symbols are used to denote membership in a 

knowledge type or domain. Figure 4.4 shows the completed semantic net using the symbols 

defined in Figure 4.3. 

1. mission attainability e {Goals/States} e {MISSION} 

2. threat e {Goals/States} e {MISSION} 

3. mission status e {Goals/States} e {MISSION} 

4. situational awareness e {Qualities} e {ENTITY/OPERATOR} 

4-7 



5. relative distance to bandit e {Measurements} e {BATTLESPACE} 

6. aircraft condition e {Attributes} e {ENTITY/OPERATOR} 

7. pilot abilities e {Qualities} e {ENTITY/OPERATOR} 

8. aircraft position e {Measurements} e {BATTLESPACE} 

9. bandit position e {Measurements} e {BATTLESPACE} 

Figure 4.4    Semantic net of knowledge that describes a process of determining mission 
status. 

This example can be generalized in the following statement: Qualities, Attributes, 

and Measurements determine States. 

The example can also be expressed propositionally as the following: 

Measurements A Qualities A Attributes =^- Decisions 

Goal A Goal => Decisions 
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U-2    Example 2. Suppose that this time the knowledge engineer is told by 

the domain expert that handling the pitch, roll, and yaw of an aircraft was a function of 

latitudinal and longitudinal pressure on the flight stick, as well as positive control of both 

the rudder and air brake. Furthermore, inputs to these devices are determined by how far 

the aircraft is off the desired point in all three planes. 

Foregoing the formal classification process for this example, the generalized statement 

takes the form: Measurements and Measurements determine States. Proportionally, this 

is expressed as: 

Measurements A Measurements => Deri. szons 

Figure 4.5 shows the resulting relationships between the knowledge types. 

Figure 4.5    Semantic net of knowledge that describ 
orientation. 

es a process for controlling aircraft 

US   Example 3.       Figure 4.6 shows a more complex example where the domain 

expert has relayed that choosing a flying maneuver to gain a position on a bandit aircraft 

4-9 



is a combination of many factors, including but not limited to bandit aircraft types, both 

aircraft positions and velocities, and the types of maneuvers and weapons known for use 

in particular situations. 

This is generalized to: Measurements and Abilities determin States.  The proposi- 

tional form is: 

Measurements A Abilities ==> Decisions 

Figure 4.6 Semantic net of knowledge that describes a process for choosing a flight maneu- 
ver depending on the types of aircraft involved, their distances and velocities, 
as well as the known maneuvers and weapon types. 

4-4-4 Example 4- Figure 4.7 reflects the domain expert's requirement that the 

mission goals as well as the wingman's engagement state can vary depending on the inputs 

from the flight lead. 
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This generalizes to: Measurements, States, and Goals determine States. The prepo- 

sitional form is: 

Measurements A States A Goals =► Decisions 

»►(UwfOnfrf»} 

•MüggpS)- 

BATTLESPACE 

isslon Goals 

MISSION 

tonomous State 

Engagement State 

ENTITY/OPERATOR 

Figure 4.7    Semantic net of knowledge that describes a process for updating mission goals, 
autonomous state, and interception state. 

4-4-5 Example 5. Figure 4.8 is a continuation of Figure 4.6. Here, the domain 

expert has indicated that given a sufficient amount of time, he will compare alternative 

maneuver options, and then choose the best maneuver possible. The semantic net becomes 

cluttered however, with multiple arcs going between the same two elements, so a new 

symbol is introduced to represent the multiple arcs. Figure 4.9 shows the new symbology. 

The topic of comparative decision making will be covered more indepth in Chapter VI. 

Example 5 can be generalized to: Decisions and Decisions determine States. The 

propositional form would be: 

4-11 



Decisions A Decisions =3- Decisions 

Figure 4.8    Semantic net of knowledge that describes a comparative decision process that 
chooses the best maneuver available. 

The conclusion from these examples is that the knowledge classifications represent 

all the generalized types necessary to abstractly describe a CGF's behavior. Applying 

the types via a semnatic net within the context of the defined domains describes the 

relationships between knowledge, decisions, and resulting knowledge. As the behavioral 

requirements for the CGF become more complex however, so will identifying and defining 

the relationships in this semantic net. This process can be useful for keeping complexity 

in control by providing a framework and organization scheme to illustrate the knowledge 

relationship components at the lowest, meaningful level. Furthermore, defining these rela- 
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MISSION 

Figure 4.9    Semantic net of knowledge that an example of multiple arc symbology. 

tionships is a necessary step to transforming the relationships into usable software, which 

is covered in Chapter V. 

4-5    Specific Domain Analysis Issues 

The purpose of this section is to explore some of the issues that were encountered 

during the course of this research. In short, there are no hard and fast answers - too much 

still depends on the specific implementation in question. 

1. Is it necessary to employ the use of a full expert to create a CGF? 

The answer to this question lies in to what extent the CGF's behaviors need to be 

modeled. If the knowledge engineer possesses enough knowledge of the entity to be 

modeled, then he/she can serve as the domain expert. However, if the behaviors to 

be modeled are sufficiently complex, having the advice of a domain expert can be 

invaluable in obtaining a correctly behaving CGF. For the Intelligent Wingman, we 

used several sources as our "domain expert", including available fighter pilots, U.S. 
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Air Force flight manuals [34, 35], and Shaw's definitive work on fighter tactics [33]. 

The result was a blend of different personal insights contrasted against textbook 

definitions that helped us gain a breadth of knowledge on the subject, enough so 

that we were able to map the resulting knowledge into a semantic net and create a 

functional fuzzy controller to depict its behavior. 

Perhaps an additional question to ask would be - is more than one domain expert 

necessary? As we learned from the Intelligent Wingman, involving more than one 

expert in the domain analysis, there is a broader base of knowledge to work from. 

In addition, inaccuracies in one expert's opinion may become evident as a result of 

another expert's input.- This will only serve to bolster the accuracy of the CGF's 

knowledge base as inaccuracies are identified and removed. 

2. How is knowledge about the CGF domain organized? 

It can seem a daunting task at first having to organize and represent the knowledge 

required to operate a CGF. Certainly there can be no substitute for long term ex- 

posure to a domain expert so that indepth knowledge can be gained. But what if 

this is not possible? How can a sufficient amount of knowledge be gained in the 

available time? This research has been partly directed towards this purpose. By 

understanding the CGF architecture model, especially the AOCs, a knowledge en- 

gineer has a head start on the knowledge elicitation process. Still, more techniques 

may be helpful. McEnany and Marshall [4] have reported on a detailed effort by 

U.S. Army's STRICOM to formalize the elicitation and organization of army unit 

tactical behaviors. They concentrate on Combat Instruction Sets (CISs) that enable 

a capture, transfer, and translation process for developing CGFs within their Close 

Combat Tactical Trainer. 

3. What elements need to be combined to what extent to create a CGF? 

The answer to this question is similar to the first. Determining the extent of the 

elements necessary for a CGF is a function of the complexity of behaviors involved. 

By carefully reviewing and scoping the AOCs, unnecessary requirements can be elim- 

inated early, thereby saving time and reducing complexity.  As long as the domain 
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analysis issues are properly documented, adding behaviors to the CGF is only a 

matter of re-initiating the domain analysis process and building on the current work. 

4. How formal should a knowledge representation be? 

Depending on the application, it may be necessary to formally define by mathematical 

means the knowledge represented in a model. Wang and Langari [24] have proposed 

a formal technique for modeling complex systems where fuzzy logic is used to derive 

theoretical control rules of the system. If the system is a multistage decision making 

control model, Kacprzyk [20] has devised a formal model for describing such systems. 
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V.   A Fuzzy Controller Inferencing Model for the CGF Knowledge and Behavior 

Domain Model 

Undertake something that is difficult; it will do you good. Unless you try to 
do something beyond what you have already mastered, you will never grow. - 
Ronald E. Osborn 

Up to this point, issues concerning the why of using fuzzy logic, a CGF architecture 

model, and a CGF knowledge domain model have been discussed. The purpose of this 

chapter is to map the results of the knowledge domain model into a working fuzzy logic 

controller. In order to do this, fuzzy controllers will be defined, and the fuzzification process 

broken down into sub-steps. Determining what should be fuzzy will be discussed, as well 

as term set models and membership function models. Reasoning Schema diagrams will 

be used to map behaviors into rule sets. Issues regarding stratification of rules, salience, 

degree of fuzziness, and defuzzification will also be discussed. Lastly, a summary of this 

process will be given. 

5.1    Definition of a Fuzzy Controller 

Klir and Yuan present a well written overview of fuzzy controllers [13]. In essence, 

a fuzzy controller is a specialized expert system that uses a tailored inferencing engine1 to 

derive answers according to knowledge bases expressed as a set of rules. These controllers 

can range from simplistic ones that manage the state of a single variable, to highly complex 

ones that manage real time transportation systems in Japan. 

Regarding the theory of fuzzy controllers, the following articles were useful in under- 

standing the scope of fuzzy controller issues. Dubois and Prade [8] discuss how a control 

law can be established from a set of fuzzy rules that describes how a dynamic system reacts 

in various situations in order to establish behavioral control of that system. Graham and 

xFor the purposes of this chapter, the inferencing engine is generic in nature.   In practice however. 
FuzzyCLIPS was used throughout this research. 
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Newell [5] discuss a method of identifying a process model from plant input-output data. 

They describe how the process model is represented using qualitative linguistic relation- 

ships apart from using human expertise in the design step. Sunan and Huihe [17] propose 

an adaptive control system that includes control mechanisms, fuzzy decisions, and neural 

networks. Kacprzyk [20] discusses multistage decision making and control models using 

fuzzy logic. He gives a series of propositions and examples that formally define multistage 

decision making. 

Regarding generalized fuzzy expert systems theory, the scope of this research does 

not include considering the general application of expert systems to the domain of CGFs. 

For a series of papers that discuss the general topic of fuzzy expert systems theory, refer 

to Kandel [21]. 

5.2    Fuzzification Process 

The process of mapping the knowledge and behavior model to a fuzzy controller can 

be broken down into the following steps. 

1. Deciding What Should Be Fuzzy 

After considering the AOCs from Chapter III, and the knowledge modeling from 

Chapter W, it is now time to decide what elements from the semantic nets need 

to be fuzzy. First however, it is necessary to elaborate on what knowledge types 

can be fuzzy. Consider again the knowledge classifications outlined in Chapter III: 

Measurements, Attributes, Qualities, Abilities, Decisions, States and Goals. As long 

as the knowledge elements in those categories can be expressed in qualitative terms, 

especially if the terms are poorly defined, they can be fuzzy. Essentially, this means 

that any piece of knowledge within the semantic net can be made to be fuzzy if 

desired. This is actually a bonus to the knowledge engineering process, as domain 

specific terms with overlapping boundaries of meaning can be applied to describe 

knowledge. For example, suppose that a domain expert informs a knowledge engineer 

that the common terms used to describe control stick movements in any direction 

are nudge, push, hard, and break, but that the distinctions between them are not 
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"hard". That is to say, a hard nudge is similar to a soft push, etc. This is a prime 

application for describing the knowledge with fuzzy terms. 

Some might say however, that Decisions can not be fuzzy. On the contrary, Dubois 

and Prade [8] distinguish between three different kinds of fuzzy rules, and even the 

FuzzyCLIPS manual allows degrees of certainty when asserting facts as a consequence 

of rule firings. 

The question still remains, however, "What should be fuzzy"? The Intelligent Wing- 

man took the approach that eventually all knowledge would be fuzzy, but that the 

fuzzification of that knowledge would be done in an evolutionary way. Even discrete 

areas of knowledge such as maneuver matrixes would eventually become fuzzy to 

some degree. The evolutionary approach would allow us time to study the effects of 

fuzzification of one area of knowledge before moving on to the next area. 

2. Establishing Rule Sets 

The semantic nets in Chapter IV use a red triangle to depict a decision making 

process. The process has certain inputs, and certain outputs. When mapped to 

the domain of fuzzy controllers, these decision making processes are in fact sets of 

rules in which inferencing occurs. The inputs and outputs to the decisions become 

antecedents and consequents to the rules. The next step is to name the rule set. 

Symbolically, this is done by changing the representation somewhat to assign a name. 

Figure 5.1 shows this change as applied to Figure 4.4. The rules themselves are not 

written at this time. 

Note that the BATTLESPACE domain in Figure 5.1 does not include a rule set. 

This is because in this instance, the relative distance to the bandit is a fuzzification 

of the values represented by the aircraft and bandit locations. At this time, no rules 

are necessary in order to determine the result. Fuzzification of measurements will be 

discussed in detail later. 

A question rises at this point as to where the rule sets should be placed within the 

semantic net. For instance, with regards to the rule set that determines mission 

attainability, an argument can be made for both cases that the rule set should reside 
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Figure 5.1    Semantic net of knowledge that includes rule set notation. 
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with the antecedent term sets that are considered in the rules, or that the rule set 

should reside the consequent term sets. As seen in Figure 4.8, rule construction can 

become quite complex involving multiple antecedents and multiple consequences. If 

both the antecedents and consequences are split among domains, where then will 

the rule set be placed? Considering that the purpose of a rule set is to derive some 

result, it seems reasonable to say that the rule set be placed in close conjunction to 

the term set that it affects most. In the case of a single consequence, the rule set 

will be in the same domain. In the case of multiple consequences across two or three 

domains, the rule set should be placed in the domain with the term set it seems to 

have the greatest impact. If this is not possible, then it is possible to represent the 

blended nature of the rule set by placing it in a space that is a union of the two (or 

three) domains. Figure 5.2 shows an example of this. 

3. Term Set Model 

After rule sets have been identified within the semantic net, the next step is to 

establish term sets. Of the six knowledge types, all but Abilities and Decisions are 

transformed into term sets. This is because Abilities are only generically defined at 

this point to be a representation of a learned skill, such as fly a Split-S maneuver, 

and Decisions have already been established as rule sets. 

The process of establishing a term set is straight forward, with the bulk of the work 

being done when the knowledge engineer elicits the knowledge areas from the domain 

expert. For instance, consider the term "situational awareness" in Figure 5.1. When 

the domain expert is interviewed, he/she should be asked to list the terms that 

define the degrees of situational awareness in a rank order. With this, the term set 

for situational awareness is complete. Obtaining or defining the term set when the 

term is established is not necessary, but the term set will need to be established prior 

to assigning membership functions, or creating reasoning Schemas for the rule sets. 

The term set model is represented in Figure 5.3. 

Once this is done, there is an informal notation that can be made to the semantic 

net to indicate the number of terms within a term set. This can be useful to convey 

the potential complexity of the rule sets, as the size of the rule set can suffer from 
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Figure 5.2    Example semantic net showing a rule set that resides in two domains. 
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Knowledge Type: 
Quality 

Term: 
SHuatlonal Awareness 

Is defined by 
Term Descriptions: 

Low, Medium, High 

arranged In a 

Term Set 

Figure 5.3    A term set model for "situational awareness". 

a combinatorial explosion based on the number of antecedent terms. Ways to deal 

with this complexity are discussed later. Figure 5.4 shows an example of this informal 

notation. 

4. Membership Function Model 

The next step is defining the membership functions associated with each term within 

the term set. Two references stood out as being valuable in helping to determine 

the shape of a membership function. Klir and Yuan [13] have a chapter devoted 

to multiple techniques for membership function modeling. Turksen [36] describes a 

set of three basic representations of membership functions, those being the vertical, 

horizontal, and contour function representations. Refer to these works for an indepth 

coverage of this topic. 

Essentially, it is the knowledge engineer's responsibility to determine from the domain 

expert the degree to which a particular term within a term set has membership 

along the range specified for the term set. When possible, empirical or statistical 

data should be used to define the function shape. Figure 5.5 shows the membership 

function model as an extension to the term set model. 

5-7 



Figure 5.4    Semantic net of knowledge showing an informal notation indicating the num- 
ber of terms in a term set. 
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Knowledge Typ«: 
Quality 

Term: 
Sftuatlonal Awareness 

Is defined A. 
Term Descriptions: 

Low, Medium, High 

is measured on a arranged In a 

Range: 

0-100 "units" 

I 
underlies a 

Term Set 

carried Into 

I 
Empirical / statistical 
data of knowledge type 
applied to a domain as 
determined by an expert. 

gives shape to 
Membership Function 

Figure 5.5    A membership function model as a continuation of the "situational awareness" 
term set model. 
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5. Rule Set Construction 

It is now possible to begin constructing the rule sets. In their coverage of fuzzy 

controllers [13], Klir and Yuan discuss the fundamentals of charting simple inferencing 

rules. When more complex rules are being written, such as would be the case in 

Figures 4.5 and 4.6, it is necessary to use a different method. Figures 5.6 and 5.7 

represent examples of Reasoning Schemas that were used to chart the reasoning 

process for the Intelligent Wingman. These Reasoning Schemas are based in part 

on the formalized statements by Klir and Yuan [13] that define the input variables 

for the inferencing engine. Refer to their work for a definition of the mathematical 

syntax. Note that Figures 5.6 and 5.7 only show the top portion of the schema. 

Reuontng Scheu» 
Rule: TAS 
Untvex »• Of DUcoum: 
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Figure 5.6    A Reasoning Schema diagram showing multiple antecedents and multiple 
consequences. 

The Reasoning Schemas are the central mechanism for representing behaviors in this 

framework. They represent the possible changes in term sets as a consequence to 

the antecedent term sets being true. It is in this association of antecedent and con- 

sequent term sets that the CGF's behaviors are established. Note that the physical 
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Figure 5.7    A Reasoning Schema diagram showing selective use of antecedents. 

construction of the schema requires some organization. To avoid aberrant behaviors 

in the CGF, all possible antecedent conditions should be enumerated in the Reason- 

ing Schema. To miss one or more conditional combinations can introduce states into 

the CGF's behavior that do not produce a controlling reaction when one is required. 

The order that the rules occur in the schema is irrelevant - they will all be considered 

in the evaluation of the rule set. However, in order to make the schema easy to use 

and debug, the rules should be organized by placing the term set name in a column 

header, and placing the term set members in the column in such a way as to iterate 

all the combinations necessary. This may be necessary for both antecedents and 

consequences. Figure 5.6 is an example of this approach. 

At other times, it may be useful to use a single schema to represent a grouping of 

rules that are similar or serve the same purpose, but that do not follow the same 

antecedent/consequent construction. Figure 5.7 shows an example of this approach 

where a blank cell in the chart means that that antecedent is not needed for that 

consequent combination. 
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An additional reason for using a Reasoning Schema is because it directly supports 

the concepts of scalability and expandability. This makes it a reusable tool that can 

last the life of the CGF. For instance, scalability is supported by two factors: rules 

can be incremently implemented to improve observing the system's behavior or for 

debugging purposes; or term sets can be set to "null" values that effectively remove 

their effect on the system. Figure 5.6 shows an example of this where the term set 

"Rudder" is always set to "nil" to discount its effect in the system. Expandability is 

supported by the tabular way terms are presented. If necessary, it is easy to add an 

additional consequent term set and identify the resulting behaviors in context to the 

other behaviors represented. Adding antecedents is not as easy, but still manageable 

by creating room within the schema where the new terms are to fit, and then filling 

in the required consequences. 

The process of filling in the consequent portion of the Reasoning Schema is again 

the responsibility of the knowledge engineer. Through an interviewing process with 

the domain expert, the knowledge engineer determines what the correct consequent 

response would be to the antecedent inputs in terms of the consequent term sets. This 

is the essential process of modeling behaviors into the CGF. The knowledge engineer 

must also understand the various conjunctive and disjunctive functions that form 

the basis of weighted decisions in fuzzy logic. Detailed coverage of this topic can be 

found in several sources [1, 13, 7, 19]. 

There is a method to modify the interpretation of a membership function shape 

within the rule set via hedges. Hedges are adjective terms such as very, somewhat, 

a little, exceedingly that add descriptive power to a rule. The Intelligent Wingman 

did not use hedges in its rule constructs, but detailed discussion of their use can be 

found in Klir and Yuan [13], as well as Giarratano and Riley [19]. 

Finally, the Reasoning Schema must be transformed into a usable rule base for an 

inferencing engine. Note that the form and syntax of the implemented rules will 

vary depending on the inferencing engine used. Giarratano and Riley [19] have a 

comprehensive introduction to the CLIPS syntax. FuzzyCLIPS syntax can be found 

in the FuzzyCLIPS User's Manual [28].   As a side note, the Intelligent Wingman 
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team found it useful to use an automated tool to take the Reasoning Schemas and 

produce syntactically correct FuzzyCLIPS rule sets. The tool itself was written in 

Ada due to the ease that Ada handles enumerated types. 

6. Degree of Fuzziness Issues 

When a discrete measurement is fuzzified, it must be done so by a certain amount 

as comparable to the actual value of the measurement and the quantified range of 

the term set. Care must be taken to match these correctly. Unpredictable results 

that are hard to trace can result by fuzzifying a value of .0001 by 1.0. Conversely, 

fuzzifying a value of 1 by .0001 does little to represent the uncertainty in the data. 

7. Defuzzification Issues 

If it is necessary to combine the use of an inferencing engine with other CGF code, 

as was the case with the Intelligent Wingman, it will be necessary at some point to 

defuzzify the information in the inferencing engine so that the exterior CGF code 

can use it. Although the act of defuzzifying a piece of knowledge removes from it 

some of its semantic meaning, algorithms have been written that attempt to arrive 

at the most reasonable singular quantity for a fuzzy value. The generally accepted 

algorithms are discussed in Klir and Yuan [13]. During the design process for the 

Intelligent Wingman, the Center of Gravity method and the Mean of Maxima method 

were compared to each other under various circumstances, and generally the Center 

of Gravity method gave the results that seemed the most applicable. Note that it 

is possible to use different defuzzification methods in different inferencing processes 

within the same system. 

8. Stratification/Salience Issues 

Consider the semantic net in Figure 5.4. Although not discussed previously, what 

is happening is a stratification of rule sets. To keep the inferencing complexity 

low, the determination of mission status has been broken down into three separate 

determinations. First threat and mission attainability are determined (concurrently 

as their antecedents and consequences do not overlap), and then mission status is 

determined. Considering the fact that in the inferencing process, all rules in a rule 

5-13 



set are evaluated to determine their applicability. This means that if there are 1000 

rules in a rule set, but only 3 antecedent sets are matched, all 1000 rules will still be 

evaluated to determine if they are applicable. This means that the larger a rule set 

is, the longer the determination time. This is not generally considered a problem for 

a one pass inference, or when there is no time constraint on the inferencing process, 

but given a tight time constraint and considering the possibility that a single rule 

set may have to be inferenced over in the course of the same time constraint, rule set 

complexity then becomes an important issue. 

If a stratification were not used in Figure 5.4, the mission status rule set would 

balloon into 144 rules, instead of the 12 rules of its current set. This may not seem 

like a large increase, but this is only a small example. Consider the combination of 15 

term sets, each with seven terms. This results in a huge combinatorial explosion. The 

drawback to stratification however, is that the fuzziness of the overall knowledge base 

is arbitrarily reduced, hence reducing its expressiveness. For example, if Figure 5.4 

did not contain any stratification, then the weighting of 14 terms would be considered 

in the determination of mission status. In its current configuration however, only 7 

terms are considered, thus some meaning is lost. 

The result is that a tradeoff occurs between degrees of fuzziness and levels of stratifi- 

cation. The knowledge engineer needs to weigh the issues involved, especially timing 

issues imposed from outside constraints, and decide on an appropriate balance be- 

tween degrees of fuzziness and levels of stratification. 

As a matter of implementation, it is important to understand the role of salience in 

rule firings. Within CLIPS, establishing a salience for a rule is the one method for 

forcing a rule (or group of rules) ,to fire within a specified sequence relative to other 

rules. This is necessary for stratification, as rule firings are non-deterministic within 

a rule stack in CLIPS. Refer to Giarratano and Riley [19] for a discussion of salience. 
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5.3    Summary 

Here is a concise summary of the fuzzy controller construction steps presented in this 

chapter. 

1. Consider the semantic net to be modeled as a controller.   Compare and contrast 

fuzziness vs. stratification issues. Rework the semantic net if necessary. 

2. Transform semantic net decision notation into rule set notation. Name the rule sets. 

3. Decide what elements from the semantic net should be fuzzy to represent the CGF's 

behavior. 

4. Determine the terms that make up each fuzzy term set. Annotate the semantic net 

if desired. 

5. Create Reasoning Schemas.   Illustrate the CGF's behavior within the rule set by 

determining consequents for each rule. Consider the use of hedges. 

6. Transform the Reasoning Schemas into a rule base for use with an inferencing engine. 

7. Determine which defuzzification method to apply. Write the defuzzification algorithm 

into the rule base and include a defuzzification rule with an appropriate salience. 

8. Refer to Appendix B for a suggested method for joining the knowledge and behavior 

model to the software architecture model. 
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VI.   Comparative Decision Making 

Take time to deliberate, but when the time for action has arrived, stop thinking 
and go in. - Napoleon Bonaparte 

The purpose of this chapter is to discuss the issues involved in comparative decision 

making. 

Figure 6.1 was an example given in Chapter IV that indicated the results from more 

than one inferencing process were to be compared to one another and a decision made 

from the comparison. 

*OiÄV*x*iV 
*'""     ~~~^ 
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^^\ ^•odft ^ow(woj(7\ >^r\ MISSION \ 
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Figure 6.1    Semantic net of knowledge that shows an example of multiple arc symbology. 

It should be noted that the fuzzy controller process as outlined in Chapter V is not 

capable of making comparative decision choices. The controller process in Chapter V is a 

reactive one that exhibits the behaviors designed into its rule sets. But what if the CGF 
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needs the ability to make "what if" comparisons, and then make a decision based on the 

results of the "what if?" Such was the case for the Intelligent Wingman. 

One of the requirements for the Intelligent Wingman was to be able to choose the 

"best" maneuver to employ in a real time engagement with a bandit aircraft of known 

abilities. This was accomplished by modifying a two player, time stepped game tree into a 

two player, asynchronous game tree. This algorithm analyzed the situation by determin- 

ing bandit vs. wingman maneuver combinations, and then scored the resulting, relative 

orientations of the two aircraft according to what the algorithm expected would happen 

during the course of a fuzzily determined time period. The algorithm also operated within 

dynamically determined time constraints based on aircraft positions, velocities, as well as 

expected weapon ranges and velocities. The goal of the algorithm was to analyze, in a 

breadth first search pattern, as many maneuver combinations possible within the given 

time constraints, and at the end, present the best possible choice to the TDE to be imple- 

mented. The process for choosing which maneuver combination to suggest was a discrete 

choice and not a fuzzy one, and neither was the final representation of the chosen combina- 

tion. Hence, this is another example of a decision process and a knowledge representation 

within the semantic net that is not fuzzy. 

The problem is how to address the issue of representing this time constrained, com- 

parative process within the context of the existing semantic net. Figure 6.2 shows how this 

knowledge is represented by a decision process that determines the maximum allowable 

time, which is then an input to the comparative decision making process. Note that the 

implementation of this decision making process is completely abstracted from the fact that 

a comparative decision is being made. In this way, the semantic net can be implemented 

using whatever comparative decision algorithm that meets the CGF's needs. 

There were two references found during the course of the research that seemed ap- 

plicable in the area of comparative decisions. The most important one was by Schaper et 

al [15]. Their work centered on proving the feasibility of using adversarial game trees in 

a real time context. The Intelligent Wingman's implementation of the game tree varies 

by its use of fuzzy inferenced scores based on relative orientations, and the adaptation of 

asynchronous play. Schaper et al also came to the conclusion that even though the begining 
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Figure 6.2    Semantic net of knowledge that includes a timing criterion for comparative 
decision making. 
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portions of a maneuver can have low scores, the maneuver can result in a high score. This 

same conclusion was reached during the testing of the Intelligent Wingman algorithm. 

A second, albeit older reference was by Wernerfelt [37] wherein he proposed that 

a game scenario could be split into a set of subgames defined by sets of decisions that 

were made by the game players. He goes on to describe within the context of business 

firms, how each of the subgames could be simultaneously cooperative and non-cooperative. 

Whereas this does not seem appropriate within the context of a time critical decision on 

what maneuver to make, it could be applicable to long term decisions about what direction 

a mission should take. 
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VII.   Conclusion and Future Research 

Judge not of actions by their mere effect; 
Dive to the center and the cause detect; 

Great deeds from meanest springs 
may take their course, 

And smallest virtues from a mighty source. 
- Alexander Pope 

7.1    Conclusion 

The goal of this thesis was to present a domain independent knowledge based frame- 

work wherein CGFs with human-like behaviors could be developed. Reasons for supporting 

the use of fuzzy logic as a means to represent real world inexactness were presented. An ex- 

isting CGF architecture was presented and was adapted to a concurrent processing design. 

Also presented was a knowledge representation scheme to describe the intended behaviors 

of the CGF. Fuzzy controllers were discussed, and a process outlined by which a semantic 

net of CGF behaviors could be transformed into a controller process. Comparative deci- 

sion making was compared against normal fuzzy controller processes. Lastly, a means was 

suggested for combining the results of the knowledge engineering and software engineering 

processes. 

Still, the questions may be asked, "What was the point? Why is this framework / 

approach better than any other?" Aside from the obvious answers of scalability and ex- 

pandability, this framework provides the capability to engineer and tune specific behaviors 

at multiple levels of decision making as described in Chapters IV and V. This greatly 

enhances an engineer's ability to validate, revise, and maintain a CGF system over the 

current approaches of production systems [10]. 
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7.2    Future Research 

There is much opportunity in this area for further study.  The following are a few 

suggested topics. 

1. A formal breakdown of human performance behaviors. This research was conducted 

on the advice of only a few domain experts. One of the areas that could use more 

thorough research is the breakdown of pilot behaviors, and how they are composed 

so that scalable behaviors can be programmed into the CGF. 

2. There are no tools with which to build fuzzy controllers. An automated tool for 

assisting in the controller construction process would be a great aid. 

3. Communicating between the wingman and outside agents is still problematic. In 

practice, there is a great deal of communication that passes between the wingman 

and a flight lead, but currently there is no representation in this design to show 

this communication, nor is there an implemention of it. Work must be done to 

enable commands to be passed to the CGF, and for the CGF to report information 

it gathers. 

4. Hedges are a useful tool that have not been applied. What are the effects of applying 

hedges? How can they be used to refine the behaviors of rule sets? 

5. Currently FuzzyCLIPS is only being used for a fraction of what it is capable of. What 

would be the results of moving the majority of a CGF into FuzzyCLIPS instead of 

the other way around? What kinds of behavioral advantages could be gained by 

building the decision engines entirely in FuzzyCLIPS? 
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Appendix A.   Background 

Since we cannot know all that is to be known of everything, we ought to know 
a little about everything. - Blaise Pascal 

It is assumed that the reader has a working knowledge of the breadth of material 

necessary to understand this thesis. The purpose of this background section is to identify 

the required areas of understanding, and to point out references of essential works should 

the reader need further study. 

References to advanced work in these topics are interspersed throughout this work 

as they are introduced. 

1. Virtual Entities 

This work is fundamentally concerned with the interaction between entities in virtual 

space. These virtual entities are representative of either man in loop simulations, 

of CGFs (also known as Intelligent Forces or IFORS). Santos et al [10] contains 

introductory material to CGFs. 

CGFs can be divided into two fundamental types: cognitive and behavioral. This 

research is concerned with the behavioral approach to modeling CGFs. The SOAR 

project [38, 23, 31, 18] is an example of the cognitive approach model where the goal 

is to simulate the human thinking process itself and apply this process to specific 

problem domains. The goal of the behavioral model is to simulate human decision 

making without modeling the human decision making process. References to this 

approach are included throughout the remainder of this work. 

2. Simulation Applications 

Two simulation applications were used in support of this research. ModSAF [6, 25] 

was used to generate virtual scenarios over a specified and topologically measured 
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land area. AFIT's Synthetic Battle Bridge (SBB) was used to observe the virtual 

entity behaviors. 

3. Distributed Interactive Simulation (DIS) 

DIS compatibility was a fundamental requirement from the research sponsors. Basic 

DIS documentation is available through the Institute for Simulation and Training 

[3]- 

4. Knowledge Representations 

Having a firm understanding of knowledge representations [2] and how to manipulate 

them is essential to this work. Below are three principle sub-categories that are used 

in various parts of this work. 

(a) Fuzzy Logic (FL) 

Fuzzy Logic is the mathematics of imprecise data. There are several established 

books on the subject ranging from the fundamentals [13], to arithmetic and 

set theory [1, 7], and applications in neural networks [22] and expert systems 

[21]. See Cansever and Ozguven [11] for a formal presentation of the fuzzy logic 

controller/inverted pendulum problem. 

(b) Rule Based Systems (RBS) 

An RBS is a collection of if-then rules which seeks to express a body of knowledge 

on a given subject. See Winston [38] and Hayes-Roth [16] for a comprehensive 

introduction. 

(c) Adversarial Game Trees 

An adversarial game tree is an approach to determining the best possible de- 

cision given a known adversary and known game rules. See Winston [38] for a 

basic introduction to game trees, or Morris [27] for an in depth introduction to 

game theory. 
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Appendix B.   Fusion of CGF Knowledge and Behaviors with Modular Design 

Architecture 

Creativity is essentially a lonely art. An even lonelier struggle. To some a 
blessing. To others a curse. It is in reality the ability to reach inside yourself 
and drag forth from your very soul an idea. - Lou Dorfsman 

In Chapter III, a domain independent architecture for CGFs was presented, and 

from there the architecture was divided between the software and knowledge engineering 

perspectives. Chapters IV through VI dealt with the issues of breaking down and iden- 

tifying the CGF knowledge and behavior domains, then how to describe semantic nets of 

knowledge within those domains. Fuzzy controllers were then discussed, and how to trans- 

form the CGF semantic nets into fuzzy controllers. Comparative decision making was also 

discussed. Now it is time to bring the knowledge engineering perspective back into contact 

with the software engineering perspective. 

Figure B.l shows the result of Zurita's modular CGF design [40] next to a CGF 

semantic net. What is required now is to identify the specific software engineering mod- 

ule(s) that would be responsible for encapsulating the various semantic net constructs, 

and then begin to physically map the relationship between the two diagrams. This would 

be repeated for each semantic net diagram created in the knowledge engineering process. 

Once accomplished, a thorough design will have been completed. 
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